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Abstract 

Observers change their audio-visual timing judgements after exposure to asynchronous 

audiovisual signals. The mechanism underlying this temporal recalibration is currently debated. Three 

broad explanations have been suggested. According to the first, the time it takes for sensory signals 

to propagate through the brain has changed. The second explanation suggests that decisional criteria 

used to interpret signal timing have changed, but not time perception itself. A final possibility is that 

a population of neurones collectively encode relative times, and that exposure to a repeated timing 

relationship alters the balance of responses in this population. Here, we simplified each of these 

explanations to its core features in order to produce three corresponding six-parameter models, which 

generate contrasting patterns of predictions about how simultaneity judgements should vary across 

four adaptation conditions: No adaptation, synchronous adaptation, and auditory leading/lagging 

adaptation. We tested model predictions by fitting data from all four conditions simultaneously, in 

order to assess which model/explanation best described the complete pattern of results. The latency-

shift and criterion-change models were better able to explain results for our sample as a whole. The 

population-code model did, however, account for improved performance following adaptation to a 

synchronous adapter, and best described the results of a subset of observers who reported least 

instances of synchrony.  
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 Many sensory properties are subject to adaptation, whereby a period of exposure to a 

stimulus or set of stimuli affects subsequent perceptual reports.   Perhaps the best-known example is 

the waterfall illusion, wherein prolonged exposure to one direction of motion makes a static test seem 

to move in an opposite direction (Addams, 1834). The list of stimuli that exhibit conceptually similar 

aftereffects after adaptation is substantial. Indeed, adaptation has been referred to as the 

psychophysicist’s microelectrode (Frisby, 1979) in recognition of its wide adoption by experimenters 

and its potential to offer insights into the various processing steps that contribute to perception. 

Audiovisual temporal recalibration (Fujisaki, Shimojo, Kashino, & Nishida, 2004; Vroomen, 

Keetels, de Gelder, & Bertelson, 2004) is a relatively recent addition to the list of adaptation 

phenomena, and promises to help us understand how the brain determines the relative timings with 

which events occur. Although a seemingly simple mental operation, the perception of relative timing 

is likely to scaffold many aspects of higher-level cognition, such as making inferences about causality 

and integrating stimuli into coherent units. Temporal recalibration reveals a previously 

underappreciated malleability in the experience of temporal succession. 

 In a typical experiment participants are exposed to sequences of adaptors (e.g. flashes and 

beeps with a constant asynchrony) and then make judgements about either the simultaneity or order 

of subsequent tests. Such adaptors change peoples’ reports about test timing, relative to baseline, 

with the typical finding being that the point of subjective simultaneity (PSS - a common summary 

measure in the literature on relative timing) has shifted toward the adapted asynchrony. It is as 

though, after having lived briefly in a world containing a constant audio or visual delay, people come 

to accept this timing relationship as synchronous. There are (at least) three accounts of the process 

underlying temporal recalibration. 

 

Accounts of Temporal recalibration 
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The first explanation of temporal recalibration we will consider is the latency-shift account. 

This account suggests that the relative time at which audio and visual signals arrive (and are 

registered) at a hypothetical comparator has shifted, as though one modality were accelerated (or 

retarded) relative to the other (e.g. Di Luca, Machulla, & Ernst, 2009). Such a change might, for 

example, be implemented by adjusting one or more thresholds along the sensory pathways, yielding 

an effective change in overall transduction time.  

The second explanation places the locus of adaptation at a higher level, positing that the effect 

is not really sensory in nature, but rather a consequence of changes in decisional criteria used to 

categorise stimuli as simultaneous or asynchronous (or indeed as occurring in a particular order). 

Under this criterion-change account (Yarrow, Jahn, Durant, & Arnold, 2011) simultaneity reports are 

malleable because people do not have a strong and persistent internal anchor regarding which 

physical timing relationship signifies synchrony. Hence they are prone to contextual biases when 

making this kind of judgement. This account is probably best understood with reference to detection-

theoretic models (which we will outline shortly), but an intuitive description would be that when 

participants are repeatedly exposed to a small asynchrony, they become more willing to accept 

somewhat similar asynchronies as simultaneous because their frame of reference has changed. 

The third explanation of temporal recalibration draws on a more established literature, 

relating adaptation to aftereffects in vision. This population-code account (Roach, Heron, Whitaker, & 

McGraw, 2011) suggests that the relative time between two crossmodal events is represented via the 

activity of a population of neurones, in a similar fashion to how spatial vision is supported by 

populations of orientation-tuned neurones in primary visual cortex (Hubel, 1988). In the case of 

relative time, multiple (hypothetical) neural units would each exhibit a preference for a particular 

asynchrony, but still respond (somewhat less vigorously) to similar asynchronies according to a “tuning 

curve.” The complete population incorporates a wide range of preferences. A “labelled-line” readout 

would then decode the activity of this population to estimate audiovisual timing. Adaptation can be 

modelled as a reduction in the reactiveness of units maximally responsive to audiovisual offsets similar 
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to the adaptor. This tends to result in contrastive aftereffects, exaggerating differences between the 

adapted and similar audiovisual asynchronies. 

Hence there are currently three quite different explanations of audiovisual temporal 

recalibration. In the burgeoning literature on this effect, different forms of (sometimes contradictory) 

evidence provide support for each. We will consider this evidence in more detail in the discussion, 

when placing our new results in a broader context.  For now, we will explain the logic underlying our 

model-based comparison of predictions extracted from each of the three accounts of temporal 

recalibration.   

 

Formalising and testing accounts of temporal recalibration via computational models 

Each of the accounts outlined in the previous section can be formalised into a modelling 

framework. Formalising accounts in this manner has several benefits. It forces us to be precise and 

make explicit choices about the processes that might underlie theoretical descriptions. It also allows 

us to make quantitative predictions, which might not match the intuitions we initially held. The flip 

side of these strengths is that we are now testing a particular variant of a theory, not all conceivable 

instantiations. The approach we adopt here is to express each account as a bare-bones model that 

(we believe) captures its core features while minimising parametric flexibility. Having done so, we 

present an experiment for which each model predicts a distinct pattern of results. 

Both the latency-shift and criterion-change accounts can be well captured using detection-

theoretic latency models developed from the 1960s onwards (Baron, 1969; Gibbon & Rutschmann, 

1969). A central feature of these models is that auditory and visual signals travel along separate 

pathways in the brain toward a decision centre (or comparator), and are subject to independent 

latency noise. This implies that the difference in their arrival times at the comparator (Δt, or the 

subjective asynchrony) is a random variable (i.e. it varies across trials even for repetitions of physically 

identical asynchronies) with a form that reflects the two contributing latency distributions, and a 

central tendency that reflects their mean difference (see Figure 1a). 
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These features led Sternberg and Knoll (1973) to describe such models as “independent 

channels” models. Different models within this class are distinguished by the decision processes 

applied at the comparator. For simultaneity judgements, the simplest conceivable process is to classify 

stimulus pairs as synchronous when Δt falls above a low criterion and below a high criterion (for 

example, when the subjective asynchrony at the comparator is above -100 ms and below +100 ms, 

with positive values denoting sound following light). A slightly expanded class of models, considered 

by Ulrich (1987) and labelled “general threshold” models, allow for decisional criteria to also be 

considered random variables reflecting, for example, an observer’s inability to maintain a consistent 

decision criteria across multiple trials. 

Here we adopt a specific variant of these models, previously found to be suitable for capturing 

key features of the psychometric function for simultaneity judgements (SJs) (Yarrow, Sverdrup-

Stueland, Roseboom, & Arnold, 2013; Yarrow et al., 2011).1 These key features include a potentially 

broad plateau, across which events are judged as synchronous, and a difference in slope for the two 

sides of the function (see Figure 4 for examples of these features). Our model assumes that the latency 

of both audio and visual signals is affected by independent Gaussian noise affecting their arrival times 

at the comparator, as a result of which Δt is considered a random variable with a Gaussian distribution 

and variance that is the sum of the variances of the individual signals. Decision criteria are also 

assumed to vary from trial to trial according to a Gaussian distribution, the spread of which might 

differ between the lower (sound before light) and upper (light before sound) criteria. These 

assumptions result in a psychometric function shaped as the difference of two cumulative Gaussians, 

and defined by four parameters (the means and standard deviations of the two contributing 

cumulative Gaussians). The meaning that can be ascribed to these parameters and the effects of 

changing them are more fully discussed in two previous publications (Yarrow et al., 2013; Yarrow et 

al., 2011) and in Appendix A of this paper, and the model is schematised in Figure 1a. 

                                                           
1 Other variants have been described recently and shown to perform well (García-Pérez & Alcalá-Quintana, 
2012a; García-Pérez & Alcalá-Quintana, 2012b) but are less suitable for characterising the criterion-change 
account we wish to test. 
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<INSERT FIGURE 1 AROUND HERE> 

 

Previously, this four-parameter model has been fitted separately to data from each of several 

adaptation conditions to provide a descriptive analysis of the effects of adaptation. Here, we 

additionally attempt to test the latency-shift and criterion-change accounts by retaining some model 

parameters across all adaptation conditions, while allowing others to vary (according to the core 

features of the two accounts), thus fitting the model to all conditions simultaneously. We test four 

conditions: A baseline condition without any adaptation, a zero (synchronous) adaptor, a negative 

(AV) adaptor, and a positive (VA) adaptor. What changes would we expect across conditions under 

the two accounts outlined so far? 

According to the latency-shift account, the mean latency of one or both signals can change 

following adaptation, resulting in a shift in the mean value of Δt. Tracing this effect through the 

machinery of our model leads to a yoked change in the means of the two cumulative Gaussians that 

contribute to the predicted psychometric function or, more simply, to a shift of the entire 

psychometric function. This prediction is schematised in Figure 2a. Although the mean of Δt might not 

be exactly zero for objectively synchronous events in baseline conditions (i.e. participants could have 

an initial bias in perceiving simultaneity, due for example to neural pathways of differing lengths), for 

simplicity we will assume this bias is small, such that adaptation to synchrony will have no effect. This 

means that all four conditions can be predicted using just six free parameters: four for the baseline 

condition, which are repeated exactly for the adapt-zero condition, plus an extra “shift” parameter in 

each of the negative and positive adaptation conditions. 

 

<INSERT FIGURE 2 AROUND HERE> 
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The criterion-change model can also be captured under this scheme using six parameters. One 

could reasonably predict a tightening of decision criteria following exposure to a synchronous adaptor. 

Repeated exposures to an adapt-zero condition should result in more stable criteria than in unadapted 

baselines, as in the former condition all tests follow the same reference. However, here we will predict 

identical performance in baseline and adapt-zero conditions, as this simplifying assumption allows us 

to equate the number of free parameters in each of the three models under consideration.  

The key assumption of the criterion-change model tested here is that, following negative and 

positive adaptation, only the decision criterion on the side of the adaptor should change. Thus after 

adapting to an audio lead, participants would regard more audio-lead scenarios as simultaneous, but 

make unchanged judgments concerning audio-lag scenarios. Adapting to a visual lead should result in 

the opposite contingency. These assumptions thus require two additional free parameters, one to 

adjust the criterion that determines the transition from judgements of audio lead to simultaneity 

following AV adaptation, and another to adjust the criterion that determines the transition from 

simultaneity to audio-lag judgements following VA adaptation. The end effect is that adaptation is 

predicted to expand the psychometric function for SJs outwards on the side of adaptation (see Figure 

2b). 

We now have formal models yielding predictions for the latency-shift and criterion-change 

accounts. We need to introduce a different class of model to describe the third, population-code, 

account of temporal recalibration (see Figure 1b). Given that only one population model has thus far 

been presented to describe audiovisual temporal recalibration (Roach et al., 2011) we have adopted 

that model here, with the addition of a decision rule suitable for simultaneity judgements. We provide 

some further exploration of this model and its parameters in Appendix A, but the key features of the 

model are as follows. 

Relative time is assumed to be encoded via a population of neural units with a range of 

audiovisual offset preferences, starting with a zero-tuned neurone and expanding outwards in 50 ms 

steps. Each neurone has an identical Gaussian tuning curve, with a standard deviation describing how 
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its mean spiking rate falls off in response to stimuli that are increasingly distant from the unit’s 

preferred audiovisual timing. Firing rates are also subject to Poisson noise. The population code is read 

out by a maximum-likelihood decoder (Jazayeri & Movshon, 2006) which is unaware of any 

adaptation. Adaptation itself is modelled using a proportional gain reduction parameter applied in full 

to neurones with preferences at the point of adaptation, and falling off from there with a Gaussian 

profile (requiring a further parameter to describe its spread). Thus far the model is exactly as described 

by Roach et al. (2011) for simulating absolute estimates of asynchrony, and it contains four free 

parameters. In order to make predictions about simultaneity judgements, we add a decision rule 

identical to that used in our earlier latency models, i.e. the model should give a simultaneous response 

if the decoded asynchrony falls between two decision criteria. This yields a model capable of predicting 

data in our four adaptation conditions with six free parameters. 

 We chose adaptation conditions in order to maximise differences between the predictions of 

the three models outlined above. In particular, we deliberately included both a baseline (no 

adaptation) condition and an adapt-zero condition, whereas previous investigations of audiovisual 

temporal recalibration have tended to use one or the other of these as if they were interchangeable. 

As Figure 2 and our previous discussion makes clear, this is approximately true for the latency-shift 

and criterion-change models, but the population-code account provides a clear prediction regarding 

exposure to synchronous adaptors. 

Population codes with multiple neural units tend to generate “repulsive” after-effects (see 

Figure 2c). These arise due to an imbalance in potential responses. Prior to adaptation, it is assumed 

all units are equally responsive, so any physical input will generate a symmetrical pattern of response 

across the population of neural units. Post adaptation this symmetry is disturbed. The responsiveness 

of the adapted unit is maximally suppressed, and other units are affected as a function of proximity. 

This biases patterns of response in favour of units that are offset from the adaptor. In this context, for 

zero adaptation some positive tests end up being decoded as more positive and some negative tests 
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as more negative (relative to an unadapted code). For SJs, this shifts decoded asynchronies outside of 

the criteria for simultaneity, so the psychometric function becomes compressed. 

 Similar processes yield a distinct predicted pattern of results following AV and VA ordered 

adapters (illustrated for the AV case in Figure 2c). The difference in predictions, relative to latency-

shift and criterion-change accounts, is particularly clear when adaptation occurs at points of transition 

from judgements of asynchrony to judgements of synchrony. While population-code models generally 

predict contrastive aftereffects, another important feature is that they don’t tend to predict changes 

in perception for the adaptor itself, because there is no imbalance in the population relative to this 

point (Mitchell & Muir, 1976; Storrs & Arnold, 2012). Thus if one adapts at a category boundary, 

population coding predicts no change in perception for that particular timing relationship, but a 

contrastive aftereffect for more distal timings. 

The population code predicts a combination of findings that contrast with other accounts of 

temporal recalibration. These are that perception of an adapted asynchrony will be unchanged but 

that the difference between this point and other timings will be exaggerated. As constant criteria for 

judging synchrony are assumed, the exaggerated difference between the adapted asynchrony and 

other timings will push some encoded audiovisual timings beyond the criterion on the opposite side 

of true synchrony from the adapted offset. So, rather than a uniform shift of the psychometric function 

(predicted by the latency-shift model) or an expansion on the side of adaptation (predicted by the 

criterion-change model) the population-code model predicts that the psychometric function should 

shrink in from the side opposite the point of adaptation (compared to an unadapted baseline 

condition) as long as adaptation is occurring very close to a decision boundary for judging events as 

synchronous. Note that these distinct predictions cannot be tested via the common practice of fitting 

data from baseline and adaptation conditions with an arbitrary function, like a Gaussian curve, and 

estimating a point of subjective simultaneity (PSS) from the fitted function’s central tendency. All three 

models predict a shift in the resultant PSS, as is commonly observed. 
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The current Experiment 

To summarise: We have formalised the core aspects of three accounts of audiovisual temporal 

recalibration into three models of equal parametric complexity (six parameters each). These models 

make distinct predictions about what should happen in zero-adaptation, negative-adaptation, and 

positive-adaptation conditions relative to an unadapted baseline. Our approach to testing the 

correctness of these predictions (and thus the correctness of these models) is to run the experiment, 

fit each model to all data from each participant separately, then compare the models according to 

their goodness of fit metrics. These will summarise the degree to which the different models are 

capable of describing the observed patterns of SJ data.  

  

Methods 

 

<INSERT FIGURE 3 AROUND HERE> 

 

Participants  

Initially, a convenience sample of 31 undergraduate psychology students was tested in a 

baseline block. They received course credit in exchange for participation. Of these, 22 (50% male, 

mean age = 26, range = 19-38) continued on to complete three subsequent adaptation blocks (see 

Figure 3). Selection was based on a preliminary fit to data from the baseline condition (see data 

analysis below). To continue, both of a participant’s estimated decision boundaries for judging 

transitions from asynchrony to synchrony had to fall within 400 ms of objective synchrony. This 

ensured both that individually determined boundaries could be used to set the lags between light and 

sound for subsequent adaptation conditions, and that participants had understood the task and were 

performing competently.  The experiment was approved following the procedures of the local 

research ethics committee. 
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Apparatus and stimuli 

The experiment was controlled by a PC running a visual C++ executable instructing an A/D 

output card (National Instruments DAQCard-6715). Audiovisual stimuli, consisting of beeps and 

flashes, were presented from a speaker and a two-colour LED. The component unimodal signals were 

10 milliseconds long and were generated at 44100 Hz, with onsets and offsets (the first and last 

milliseconds) smoothed using a Hanning window. The LED was placed centrally, with a chinrest used 

to maintain an observer distance of 57 cm, so that the visual stimulus subtended ~0.5 degrees visual 

angle. Computer outputs (+5v) caused green flashes for targets and red flashes for adaptors. Auditory 

signals (1000 Hz sinusoidal pure tones) were presented from a computer speaker, offset around 30° 

to the left, at a clearly audible level. Accurate stimulus timing was confirmed using a 20 MHz storage 

oscilloscope (Gould DSO 1604).  

 

Design  

The study had a within-subjects design with four conditions: Baseline (no-adaptation), 

synchronous (adapt zero), light leading (adapt VA) and sound leading (adapt AV). Each condition 

consisted of two blocks of 100 target stimuli. All participants received the baseline and adapt-zero 

conditions first, followed by counterbalanced presentations of AV and VA adaptation conditions (see 

Figure 3). In all conditions target stimuli could have stimulus onset asynchronies (SOAs) ranging from 

-450 to + 450ms, representing the delay between light and sound components (i.e. positive values 

represent sounds lagging lights). The SOA was randomly selected on each trial from a condition-

specific distribution. Initially, distributions were uniform and ranged from -210 to +210ms in steps of 

30ms, but they evolved over trials to reflect participant responses. If a participant responded 

simultaneous to a positive asynchrony the distribution was increased at higher positive SOAs than the 

one just tested, whereas if the response was non-simultaneous the distribution was increased at 

smaller SOAs. Opposite rules were applied following a negative SOA trial. Hence, the distribution was 

slowly adjusted to best sample the two transitions, from perceiving asynchrony to synchrony, for each 
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individual – an adaptive process based loosely on the generalised Pólya urn method of Rosenberger 

and Grill (1997). 

 

Procedure 

After providing consent, participants were seated in a darkened room and were given ten 

example “non-simultaneous” presentations, five with a beep preceding a flash by 300 ms, and five 

with a flash preceding a beep by 300 ms. Participants were asked to select simultaneous (right arrow 

key) only when they were sure that the tone and flash had happened at exactly the same time; 

otherwise they should select non-simultaneous (left arrow key). The delete key could be used to 

cancel a trial if there had been a lapse in concentration (in which case a replacement trial was added 

at the end of the block). 

The baseline condition contained a sequence of target stimuli with random SOAs. There was 

a 500-1000ms (uniform random) delay from the participant’s response until the midpoint of the next 

target stimulus pair. The baseline condition was followed immediately by the adapt-zero condition. 

All adaptation conditions started with 120 adaptors (red flashes and beeps with a constant SOA), 

before the first target pair was presented (distinguished by a green flash). After this initial exposure, 

3-5 “top-up” adaptors appeared before each target. Adaptors were separated by 1100-1200ms. Since 

participants could not predict how many adaptors would appear before a target, they had to focus on 

the LED and speaker during the entire procedure. 

When participants had completed the baseline and adapt-zero conditions, they received the 

choice of either a 15 minute break or to return another day. Most chose to complete the task on the 

same day. During the break individual boundaries for simultaneity perception were estimated using 

baseline data (see data analysis, below). The SOA of adaptors in the adapt-AV condition was then set 

to the estimated negative asynchrony/synchrony boundary, and vice versa for the adapt-VA condition.  

 

Data analysis and modelling 
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In the baseline condition, the two transitions from judgements of asynchrony to judgements 

of synchrony were derived for each participant, in order to use these values as adaptors. Low (audio 

leading to simultaneity) and high (simultaneity to audio lagging) category boundaries, and the 

standard deviation associated with each, were estimated by performing a maximum-likelihood fit 

using Matlab (the MathWorks) using a function with the form:  

 

(1)  P “simultaneous” = Φ(BHigh, Δt, σHigh) - Φ(BLow, Δt, σLow) 

 

I.e. a difference of two cumulative Gaussians, with their means representing the high and low 

synchrony boundaries (Yarrow et al., 2011; Yarrow et al., 2013).  

For our main analysis, the relative ability of the three different models of temporal 

recalibration to explain each participant’s complete data set was assessed. We used Nelder-Mead 

simplex searches (Nelder & Mead, 1965; O'Neill, 1971) to find maximum-likelihood fits (with a 

binomial data model) for each participant across all four conditions simultaneously. To increase our 

chances of finding a global maximum, simplex searches were initiated from ten different starting 

parameter combinations, and then twice more, starting each time from the current best fitting 

parameter estimates. Because one of the parameters in the population-code model can take only 

discrete integer values (see below) and the simplex search is not optimised for this type of parameter 

(Lewandowsky & Farrell, 2011) we additionally completed a second set of 12 searches for this model, 

each of which combined a grid search on the integer parameter with repeated simplex searches on 

the remaining parameters. 

For the latency-shift model, we used the same basic architecture outlined for our baseline fit 

above. To deal with the additional three conditions, we introduced two further parameters (for a total 

of six). These were “shift” parameters (SAV and SVA) that were added to the means of both cumulative 

Gaussians in Equation 1 (i.e. BLow and BHigh) in the adapt AV and adapt VA conditions respectively, 

thereby shifting the entire psychometric function. The two sides of the SJ psychometric function 
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retained the same slopes for all four conditions (i.e. sensory noise was not permitted to change).2 For 

baseline and adapt-zero conditions, horizontal position was also held constant. 

In the criterion-change model the slopes and boundaries were again held constant across 

baseline and adapt-zero conditions. Two “change” parameters (CAV and CVA) were introduced to 

capture adaptation. For the adapt-AV condition, CAV was added to BLow, to allow the low boundary to 

shift relative to baseline, while in the adapt-VA condition the high boundary was instead allowed to 

shift.  

 For the population-code model, we adapted the model described by Roach et al. (2011) in 

order to predict performance in an SJ task. The model assumes a population of 2N-1 neural units (i.e. 

1,3,5 etc.) with stimulus preferences balanced about zero with a fixed spacing of 50 ms per unit. All 

units share the same standard deviation σ, so have tuning functions: 

 

 (2)  𝑓𝑖(𝑆𝑂𝐴) = 𝐺𝑖𝑒−(𝑆𝑂𝐴−𝑆𝑂𝐴𝑖)2/2𝜎2
 

 

Where Gi is the gain of the ith neural unit, and SOAi is its stimulus preference. Roach et al. did 

not specify the unadapted gain of units used in their simulations, so we arbitrary selected a value of 

G0 = 100 (this sets the maximum mean spike rate for an unadapted neurone). Adaptation is assumed 

to affect neural gains depending on the distance between a neural unit’s stimulus preference and the 

point of adaptation, SOAa, with a maximal proportional reduction, α, at the point of adaptation. 

Adaptation then falls off with a Gaussian profile, with standard deviation σa: 

 

 (3) 𝐺𝑖 = 𝐺0(1−∝ 𝑒−(𝑆𝑂𝐴𝑖−𝑆𝑂𝐴𝑎)2/2𝜎𝑎
2
) 

 

                                                           
2 A reviewer of this paper made the quite reasonable observation that noise affecting the latency of sensory 
signals might well scale with their latency, which implies that the variance of the difference (Δt) distribution 
could change following adaptation under a latency-shift account. We did investigate an eight-parameter model 
permitting changes of this kind, but do not report it here for reasons of brevity as the analysis was not very 
revealing; see footnote 6 in the discussion.  
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 Each unit will produce Ri spikes in the critical interval after stimulus presentation, where Ri is 

a random variable reflecting the neural unit’s mean firing rate fi (based on its tuning function) and the 

presence of Poisson noise: 

 

 (4) 3 𝑝(𝑅𝑖 = 𝑘|𝑆𝑂𝐴) =
𝑓𝑖(𝑆𝑂𝐴)𝑘𝑒−𝑓𝑖(𝑆𝑂𝐴)

𝑘!
    

 

 The population activity must now be decoded to infer the presented SOA, following the 

maximum-likelihood decoding scheme described by Jazayeri and Movshon (2006). Looking separately 

at each neural unit, the likelihood of each possible SOA is equal to the probability that the neural unit 

would fire Ri spikes given that SOA as an input. Working with logs (Jazayeri & Movshon, 2006, Equation 

1) allows us to sum such likelihoods across neural units to generate a log-likelihood function for 

different possible SOAs: 

 

 (5) 4 𝐿𝑜𝑔𝐿(𝑆𝑂𝐴) = ∑ 𝑅𝑖 log 𝑓𝑖(𝑆𝑂𝐴)𝐼
𝑖=1 − ∑ 𝑓𝑖(𝑆𝑂𝐴)𝐼

𝑖=1 − ∑ log 𝑅𝑖!𝐼
𝑖=1  

 

 The decoded SOA falls at the maximum of this function, which we estimated using the 

Newton-Raphson algorithm (applied iteratively to the differentiated log-likelihood function, from 

several starting points). 

                                                           
3 Our equation here differs slightly from Roach et al.’s, as we have corrected what we believe to be a typo in 
their paper. 
4 Jazayeri and Movshon (2006) noted that the last term can be ignored as it is independent of the stimulus, and 
that the second term will sum to a constant for a homogenous representation, which allowed them to safely 
ignore that term as well. However, for the (unusual) bounded population code used here, the second term 
cannot be ignored. Our simulations produced different patterns compared to those reported by Roach et al., 
leading us to infer that they had decoded only after dropping this second term. In particular, Roach et al. argue 
that the compressive bias they observed in their absolute estimation data is predicted by a population code. 
Our simulations suggest that this is not true when using an optimal decoder (although it might be true for a 
decoder that fails to take account of the finite coverage of the encoding layer). As compressive/centring biases 
are often observed with absolute estimates (Gescheider, 1988) we suggest that this particular feature of their 
data probably arose from decisional rather than sensory processes.  
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In our experiment participants were presented with different physical SOAs and categorised 

them as either simultaneous or not, i.e. an SJ task. To achieve appropriate predictions, the four 

parameters of the Roach et al. neural population model were supplemented with two additional 

parameters, a low and high decision boundary. These permitted sorting of the population code 

model’s output into a simultaneity function, with model predictions for each simulated trial either 

falling within or outside these boundaries. The final parameters for the population-code model were 

therefore: Number of neurons in population (N); standard deviation of each neuron’s tuning curve (σ); 

depth (α, from 0-1) and bandwidth (σa) of adaptation; and a low and a high decision boundary (BLow 

and BHigh). When searching for the parameter values that maximised the model fit, predictions were 

simulated using 2000 simulated trials per SOA value tested. 

 

Results 

 For each participant, we fitted their simultaneity judgement data (from all four conditions at 

once) to each of our three different models. Because the models all had six parameters, their goodness 

of fit can be compared directly using the log-likelihood of the MLE fit, where a higher score indicates 

a better fit. To illustrate our fitting procedures, we first present example data at the individual-

participant level (Figure 4). The best-performing model varied from participant to participant, and it 

is useful to see how each of the different models are able to capture particular patterns of data. Hence 

Figure 4 illustrates the best-performing model fits for three different participants, selected because a 

different model performed best for each of them. 

 

<INSERT FIGURE 4 AROUND HERE> 

 

 Figure 4a shows data from a participant whose behaviour was well captured by the latency-

shift model. Their SJs show similar patterns in the baseline and adapt-zero conditions, but the 

distribution of simultaneous responses shifts uniformly to the left (i.e. toward sound leading 
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asynchronies) following AV adaptation, and uniformly to the right (i.e. toward sound lagging 

asynchronies) following VA adaptation. 

 The participant illustrated in Figure 4b fitted the predictions of the criterion-change model 

best. While there is little change from baseline to adapt-zero conditions, the distribution of 

simultaneous responses appears to expand outwards in the adapt-AV and adapt-VA conditions, 

selectively on the side of adaptation. 

 Finally, Figure 4c displays data from a participant who conformed well to the predictions of 

the population-code model. The distribution of simultaneous responses appears to contract inwards 

following adaptation to synchrony (compared to baseline). The distribution’s centre of mass shifts left 

following AV adaptation, and right following VA adaptation, but this is achieved in each case by a 

shrinking of simultaneous responses in from the side opposite the adaptor, i.e. from the right for the 

adapt-AV condition and from the left for the adapt-VA condition. 

 Variability at the individual level might be considered as evidence of either individual 

differences or as simple measurement noise. What can we conclude at the group level? These data 

are shown in Figure 5. Panel A plots the mean log-likelihood of the MLE fit, averaged across all 

participants for each model. High values of log-likelihood indicate a better fit. Comparing the models, 

it is clear that the latency-shift and criterion-change models are performing better on average than 

the population-code model. This was confirmed by a repeated-measures ANOVA with the 

Greenhouse-Geisser correction for violations of sphericity (F[1.19,24.89] = 9.80, p = 0.003) and Tukey’s LSD 

corrected follow-up paired t-tests (shift vs. population t[21] = 3.77, p = 0.001; change vs. population t[21] 

= 3.01, p = 0.007; shift vs. change t[21] < 1, N.S.).  

 

<INSERT FIGURE 5 AROUND HERE> 

 

 We were concerned that the apparent success of the latency-shift and criterion-change 

models might be due to these models capturing patterns of data that the accounts they represented 
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did not really predict. Specifically, we noticed that some individuals yielded parameter estimates for 

the shift and change parameters that were opposite to predictions, e.g. an SAV parameter with a 

positive value, indicating a shift to the right (toward sound-lagging asynchronies) following AV 

adaptation. To assuage this concern, we modified the models to constrain shift and change 

parameters to be negative-only or positive-only, in line with predictions of the underlying accounts. 

Although this modification led to slightly worse group mean fits for these models, the pattern of data 

(shown again in Figure 5a) changed little, and differences between both the latency-shift and criterion-

change models and the population-code model remained significant (F[1.12,23.55] = 4.84, p = 0.034; shift 

vs. population t[21] = 2.44, p = 0.024; change vs. population t[21] = 2.18, p = 0.041).  

Mean parameters for best-fitting models are presented in Tables 1-3, for both the constrained 

and unconstrained models. Data are presented both for all participants, and for the subsets of 

participants for whom a model provided the best fit. Table 1 shows latency-shift model parameters, 

and suggests a shift that was more pronounced for AV adaptation than for VA adaptation (see the S, 

i.e. shift, parameters), with transitions from judgements of asynchrony to judgements of synchrony 

tending to occur when the stimuli were separated by around 200 ms (see the B, i.e. boundary, 

parameters). There is some evidence for a flatter SJ function on the light-leading side (i.e. σHigh > σLow). 

Table 2 shows criterion-change model fits, suggesting a pronounced effect of AV adaptation at the low 

boundary and VA adaptation at the high boundary (see the C parameters). Other trends are similar to 

those observed for the latency-shift model. Finally, Table 3 shows population-code model fits, 

suggesting a neural population with preferred SOA values ranging out to around +/-750 ms (based on 

the N parameter combined with 50 ms spacing). The tuning of each neurone (reflected in the σ 

parameter) is very broad (much wider than reported by Roach et. al. 2011). Adaptation leads to a 

roughly 20% spike-rate suppression within a quite localised region (see the α and σa parameters 

respectively). 

 

<INSERT TABLES 1-3 AROUND HERE> 
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 Given our theoretical interest in the mechanisms of temporal recalibration, we also wished to 

rule out a less interesting possibility as to why the population-code model might be underperforming. 

This model can only generate a near-symmetric psychometric function. This symmetry is primarily a 

product of the assumption of equally spaced channels across the encoded dimension: Different 

shaped functions might ensue if one were to assume an anisotropic distribution of channels across 

timing offsets, as posited to account for the oblique effect in tilt perception. In contrast to our 

population-code model, the particular modelling framework we selected as the basis for our latency-

shift and criterion-change models allows psychometric functions to differ widely in slope on the AV 

and VA sides.  

To address this issue we reduced the number of parameters in the better-performing models 

to five, by using a single σ parameter for both sides of the psychometric function (in place of a separate 

σLow and σHigh). As the models now contained different numbers of parameters, we adopted the Akaike 

Information Criterion (AIC) as a measure of goodness of fit, which includes a correction for such a 

difference.5 The data are presented in Figure 5b, where a low value denotes a better fit. Despite being 

able to generate only symmetric psychometric functions, the latency-shift and criterion-change 

accounts still significantly outperformed the population-code model (unconstrained models: F[1.20,25.10] 

= 8.56, p = 0.005; shift vs. population t[21] = 3.68, p = 0.001; change vs. population t[21] = 2.83, p = 0.010; 

constrained models: F[1.20,25.10] = 4.63, p = 0.035; shift vs. population t[21] = 2.56, p = 0.018; change vs. 

population t[21] = 2.12, p = 0.046). 

                                                           
5 We chose AIC primarily for simplicity. We note that the Bayesian Information Criterion (BIC) punishes extra 
parameters more severely, so would exacerbate the difference we obtained. However, it is difficult to assess 
whether the flexibility endowed by all the parameters in the population-code model is as great as that offered 
by those in the latency-shift and criterion-change models, and we suspect it may not be, particularly for N and 
σ, which both seem to mainly vary the magnitude of noise in the SOA estimates that the model produces. We 
ran one final ANOVA comparing the best-fitting log-likelihood values of the five-parameter latency-shift and 
criterion-change models (means -167.1 and -164.7 respectively) with that of the population-code model (mean 
-180.2) hence effectively assuming that the population-code model had only five parameters. We still found a 
significant difference between models (F[1.20,25.10] = 4.05, p = 0.048) and specifically between latency-shift and 
population-code models (t[21] = 2.38, p = 0.027) but the difference between criterion-change and population-
code models became marginal (t[21] = 1.99, p = 0.059) 
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 To visualise the reasons some models were outperforming others, Figure 5c shows the raw 

data combined from all participants in each condition. There is a trend for simultaneous category 

judgements to fall off more quickly in the adapt-zero condition compared to the baseline condition, 

most consistent with the population-code model, but this model fails to predict the adapt-AV and 

adapt-VA conditions, where there is a substantial increase in synchrony judgements on the side of 

adaptation. This is the main change that seems to occur when these two adaptation conditions are 

compared to the adapt-zero condition (as predicted by the criterion-change model) but the situation 

is more complex when adapt-AV and adapt-VA conditions are compared to the non-adapted baseline, 

explaining why the criterion-change model is not significantly outperforming the latency-shift model 

in this data set. For comparison with previous reports, we also performed a more conventional 

analysis, in which data were fitted independently in each of the four conditions. This analysis is 

presented in Appendix B (and illustrates that our experiment yielded clear evidence of temporal 

recalibration when assessed in a typical fashion). 

Finally, we also considered whether the subsets of participants best fit by each model varied 

systematically, in terms of best-fitting model parameters that could reflect how conservatively and/or 

precisely participants performed the SJ task. For simplicity, we performed this analysis on the five-

parameter versions of the latency-shift and criterion-change models, as these provide a single 

estimate of sensory noise (σ) rather than two such values. This value did not differ across subgroups 

for either model (between-groups ANOVA; p > 0.05). It was not appropriate to assess sensitivity based 

on the parameters of the population-code model, because both σ, representing the tuning curve width 

of each neurone in the population, and N, representing the number of neurones in the population, 

contribute to precision (see Appendix A) and appeared to trade off with one another in different sub-

groups. However, we did additionally consider the width of the SJ function (i.e. BHigh – BLow) which 

indicates how broadly participants place their criteria for judging events synchronous. Here trends in 

all three model fits were consistent. On average, the subgroup of participants best fit by the 

population-code model judged events to be simultaneous over a significantly reduced range of SOAs 
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(309 ms; F[2, 19] = 7.92, p = 0.003) compared to those best fit by the latency-shift (527 ms; p = 0.005) 

and criterion-change (472 ms; p < 0.003) models. 

 

Discussion 

In this paper we have formalised three accounts of temporal recalibration (the latency-shift, 

criterion-change and population-code accounts) into computational models that each predict subtly 

different patterns of simultaneity-judgement data following exposure to audiovisual adaptors. Our 

participants completed four conditions (baseline, adapt zero, adapt AV and adapt VA) in a fairly typical 

audiovisual temporal adaptation experiment. Models were fitted to data across all four conditions at 

once, yielding metrics of goodness of fit for each model and participant. Although each model 

performed best for some subset of participants, at the group level the latency-shift and criterion-

change models explained patterns of data better than the population-code model. This did not depend 

upon incidental model features that are not directly related to the different accounts of temporal 

recalibration, such as the freedom of some models to capture changes running opposite to 

predictions, or to predict an asymmetric psychometric function. Hence our data argue against a 

population-code model of temporal recalibration for participants in general. 

This conclusion applies exclusively to the particular task and models we have compared. All of 

the models could have provided better fits if endowed with greater parametric flexibility. Indeed, by 

blending the models we could easily permit them all to predict each of the patterns of SJ data outlined 

here. For example, under the criterion-change model, decision criteria could be permitted to contract 

following adaptation to synchrony (at the cost of two further free parameters). This would still be in 

keeping with the spirit of the account.6 A slightly more tenuous, but still reasonable, adjustment would 

be to permit movement of the decision criterion opposite the side of adaptation following AV or VA 

                                                           
6 We did test a model of this kind, alongside an eight-parameter variant of the latency-shift account in which 
sensory noise was allowed to vary following AV or VA adaptation. However, the two models fitted equally well, 
and also showed similar AIC values to the simpler six-parameter models we have presented, so we chose not 
to complicate the paper further by including this analysis. 
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adaptation, as well as the one on the side of adaptation (for a ten-parameter model). This would be 

formally identical to a model combining latency shifts and criterion changes (see Yarrow et al., 2011 

for further discussion of this model equivalence). Similarly, the population-code model could be 

combined with criterion changes at the boundaries where adaptors are presented, for a plausible 

eight-parameter model. We have not gone on to test all possible model variants in this way as it seems 

fairly clear that with a relatively modest increase in parameters, blended models will become 

indistinguishable in terms of their ability to predict the current data set. 

Does this mean that our findings have no discriminative value? We would argue not. In 

particular, it seems to us that a simple population-code model, based on a loose analogy with the kind 

of representation known to exist for orientation in primary visual cortex and a simple feedforward 

projection to a decoding layer, is unlikely to ever fully capture the effects of audiovisual adaptation on 

simultaneity judgements unless supplemented with mechanisms operating beyond the sensory coding 

layer (such as a change in decision criteria). Many of our participants exhibited an increased tendency 

to report synchrony on the side of the adaptor, at SOAs beyond the point of adaptation. This is difficult 

to reconcile with a population code, even one that is elaborated substantially. There are probably 

other reasons that the population-code model fared worst in our comparisons, such as the fact that it 

yokes AV and VA adaptation via a single parameter, forcing a prediction of symmetrical adaptation 

effects for symmetrically positioned adaptors. However, we would still suggest that a fairly substantial 

proportion of naive participants change their SJs in ways that are highly suggestive of additional 

mechanisms beyond neural gain suppression. 

In the remainder of the discussion, we provide some context for our current findings by 

presenting a brief review of other forms of evidence bearing on the question of which mechanism 

best accounts for audiovisual temporal recalibration. However, before doing so we make explicit some 

limitations in our study. First, our desire to adapt observers at their own individually determined 

synchrony-asynchrony boundaries led us to present the baseline condition first to all participants. 
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Although not uncommon in studies of temporal recalibration, this approach implies that some effects 

ascribed to adaptation might reflect practice. 

Second, our model-fitting procedures differed slightly across models. In particular, the 

population-code model was simulated, not predicted from equations like the other two, which might 

imply a less smooth error surface, and thus greater difficulty locating the global maximum best fit. 

However, we do not think it is likely that this led to the population-code model’s poorer performance, 

as we provided this model with extra opportunities via a second set of parameter searches (see 

methods). 

Third, the fact that our first two models have been formalised to offer predictions without the 

need for simulation makes it much easier to be certain that all their parameters are offering some 

functional advantage (and to understand the particular kind of flexibility each parameter endows; see 

Appendix A). There is a real concern that the six parameters of the population-code model can trade 

off to a greater extent than those of the other models (for example N, the number of neurones in the 

population code, and σ, the standard deviation of their tuning functions, seem to have rather similar 

effects, both affecting the slope of the psychometric function). Hence comparisons like ours that 

simply adjust for the number of parameters should be treated with some caution.   

Finally, it is worth noting that the population-code model provides a principled prediction for 

the exact degree of recalibration at multiple adaptation positions, not just the three tested here (i.e. 

it predicts how recalibration effects should scale for increasingly asynchronous adaptors). This would 

offer it greater parametric simplicity (compared to the latency-shift and criterion-change models) in 

future tests that could include a larger set of adaptation conditions. 

 

Wider evidence bearing on accounts of temporal recalibration 

Our analyses provide some support for both the latency-shift and criterion-change accounts 

of temporal recalibration, relative to the population-code account. Of course, these data are not the 

first evidence on this issue. We review other literature next. For reasons of brevity, we exclude 
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consideration of the related literatures on motor-sensory temporal recalibration (Stetson, Cui, 

Montague, & Eagleman, 2006) and Bayesian temporal calibration (Miyazaki, Yamamoto, Uchida, & 

Kitazawa, 2006). 

Evidence in favour of the latency-shift account comes from experiments in which recalibration 

has been measured using both temporal judgements and simple reaction times. Navarra, Hartcher-

O'Brien, Piazza, and Spence (2009) compared an adapt-zero baseline to asynchronous auditory-visual 

and visual-auditory adaptors (assessed in separate groups). They found that simple RTs to detect 

auditory stimuli changed in a manner consistent with a latency-shift account of recalibration. Auditory 

RTs increased following AV adaptation and decreased following VA adaptation. Visual RTs, meanwhile, 

were unchanged. 

Around the same time, Di Luca, Machulla, and Ernst (2009) tested zero, AV and VA adaptors 

in a single group. They also examined an additional factor with two conditions, one where audiovisual 

events were co-localised, and one in which audio events were delivered via headphones. They found 

effects broadly consistent with latency shifts when comparing AV and VA adaptation (although trends 

relative to baseline did not follow recalibration predictions). The affected modality depended on the 

auditory stimulus. For co-localised stimuli, visual RTs were speeded by AV adaptation, whereas with 

headphone presentation auditory RTs were speeded following VA exposure. The former result is 

essentially opposite that of Navarra et al. (2009) in terms of the affected modality despite seemingly 

similar experimental conditions (although co-localisation was perhaps less precise, with auditory 

stimuli coming from two speakers on either side of a visual stimulus). Di Luca, Machulla, and Ernst 's 

(2009) second result is a better match to that obtained by Navarra et al., despite having a discrepant 

spatial layout. 

Harrar and Harris (2008) also tested how VA adaptation affected simple reaction times 

(compared to an unadapted baseline) using co-localised stimuli. They found a slowing of visual RTs. 

An effect on visual RTs for co-localised stimuli echoes Di Luca, Machulla, and Ernst 's (2009) findings, 

but those authors found speeding for AV adaptation and no effects for VA adaptation. Harrar and 
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Harris (2008) also tested adaptation to other modality combinations (audiotactile and visuotactile) but 

found no significant RT changes. Sometime later, Yuan, Li, Bi, Yin, and Huang (2012; Experiment 2) 

revisited simple RT effects of AV and VA adaptation, this time using a more complex contingent 

adaptation paradigm (see later). They found no effects on the difference between visual and auditory 

RTs. Hence, summarising work with simple RTs, there is an overall tendency to find changes in 

response speed to one or the other modality in a manner that is broadly consistent with a latency-

shift account of temporal recalibration, but inconsistent patterns of results suggests caution when 

interpreting these results. 

Two papers described above included a second type of test pertinent to the latency account: 

Cross adaptation to different modality pairs. Di Luca, Machulla, and Ernst (2009) had participants make 

temporal order judgements about audiovisual, audiotactile and visuotactile pairs, following either AV 

or VA adaptation. They replicated classic audiovisual recalibration, but also observed effects on 

visuotactile judgements (when stimuli were co-localised) and audiotactile judgements (with 

headphone presentation of auditory stimuli), consistent with adaptors having induced latency shifts 

for visual and auditory stimuli respectively. Harrar and Harris (2008) also used temporal order 

judgements between these three modalities, with tests following VA, TV or TA adaptation regimes. In 

their experiment, VA adaptation yielded only audiovisual recalibration, with no significant transfer. In 

fact, the only significant cross adaptation they observed (from TV adaptation to audiovisual tests) ran 

opposite to that predicted if vision had been speeded. 

 

Physiological measures 

High temporal resolution neuroimaging, alongside behavioural measures, has also been used 

to investigate temporal recalibration. The simplest prediction of the latency-shift account is that there 

should be a shift in one or both unimodal event-related brain responses that matches the 

hypothesised change in neural latency. There is at least one report suggesting a relevant change in 

latency, specifically a speeding of the second response of bimodal neurones in superior colliculus to 
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staggered AV/VA stimulus presentations following adaptation (Yu, Stein, & Rowland, 2009). This shift, 

however, was dependent on the presence of an enhanced response to the first stimulus (i.e. it was 

absent when the second stimulus was presented alone), so the physiological mechanism suggested by 

these data is rather different to an independent acceleration of one modality. 

Moving to human physiology, when Kösem, Gramfort, and van Wassenhove (2014) recorded 

magnetoencephalography during AV, zero, and VA adaptation, there were no shifts in latency of 

sensory event-related fields. However, over the course of adaptation phase shifts were observed in 1 

Hz steady-state responses evoked by adaptors, in a direction consistent with the adaptation regime. 

An intriguing correlation between these phase shifts and behavioural responses was also reported.7 

 

Summary of evidence supporting a latency-shift8 

Some evidence supports a latency-shift account, but there are many inconsistencies. Evidence 

suggesting that changes in latency can generalise to decisions regarding a modality that had not been 

adapted runs contrary to the predictions of population-coding, which only predicts effects on the 

relative timing of the two adapted modalities, not on their individual components, and consequently 

not on the relationship between these components and a third modality. The criterion-change account 

would not predict changes in simple reaction time9 or EEG components. This account could provide a 

reasonable decision-level explanation for transfer effects, for example by allowing that following VA 

adaptation, all punctate signals lagging vision are interpreted using a more liberal criterion.  

 

                                                           
7 The result should probably be considered preliminary for a couple of reasons. First, the behavioural measure 
(post-adaptation PSS, rather than a change in PSS) was not completely matched to the neural one (a change in 
phase). Second, the behavioural measure would not be predicted to show strong recalibration, as there were 
no top-up phases during TOJ testing (and in fact recalibration went in the wrong direction for VA adaptation 
relative to baseline). 
8 Note that the effects of adaptation on implicit measures, which can be taken to support either the latency-
shift or population-code accounts, are considered towards the end of the discussion. 
9 A different kind of criterion account could be considered, based on changes in the accumulation threshold 
used for detection in simple RT tasks, but this is really a particular possible implementation of the latency-shift 
account, and conceptually rather different to the criterion-change account tested here. 
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Evidence contradicting a latency-shift 

Several reported results seem inconsistent with a latency-shift account of temporal 

recalibration. Perhaps the most striking example is the non-uniform biases in absolute estimates of 

SOA obtained following adaptation by Roach et al. (2011). Biases in that study were much reduced in 

the vicinity of the adaptor, as predicted by a population code (although these authors did not observe 

reliable reversals in bias, like those denoted in Figure 2c, perhaps because they did not sample SOAs 

widely enough). It was these data that led Roach et al. to propose a population-code account of 

temporal recalibration. 

Roach et al's (2011) findings are at odds with those reported here for many of our participants 

(e.g. Figure 4a and 4b), who increased their reports of simultaneity beyond the point of adaptation, 

where repulsive biases generated by a population code should ensure that stimuli appear non-

synchronous. Probably the most parsimonious way to explain these discrepancies would be to suggest 

a two-stage process, whereby a (non-uniform) sensory change must be interpreted by a bias-prone 

decisional process. Assuming this scheme, many of our participants showed profound changes in the 

decisional process. This may not have been the case for Roach et al. (2011), who used a task that might 

be prone to rather different kinds of decision bias, and also tested just a few highly practised 

observers, rather than a large naive sample. It is noteworthy that in our sample, the subgroup of 

participants who were best fitted by the population-code model were least likely to report synchrony 

(e.g. they had tight SJ functions) which might be expected of trained psychophysical observers. 

Very recently, population-code predictions have been considered in some detail in a paper by 

Roseboom, Linares and Nishida (2015) making use of a three-alternative forced-choice procedure to 

assess changes in sensitivity following AV and VA adaptation. Their data revealed the hypothesised 

changes in sensitivity, which could be modelled as a combination of changes in the slope and lateral 

position of a transducer function relating objective time to perceived time. Slope changes in this 

function are predicted by a population code account, while lateral shifts are predicted by a latency-

shift account (see our Figure 2 parts A and C). Interestingly, allowing a change in transducer slope was 
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particularly useful when modelling an adapt-zero condition, in line with the tendency towards 

contraction of the SJ psychometric function we observed here in our equivalent condition. 

 

Evidence for and against the criterion-change account 

Previous research also bears on the criterion-change account. The most targeted investigation 

in this context was that of Yarrow et al. (2011). They used logic similar to that presented here, 

alongside a ternary judgement task10, arguing that a latency-shift account would most 

straightforwardly predict that both decision boundaries should change together following adaptation 

(i.e. a shift of the entire psychometric function) whereas a criterion-change account would predict a 

shift of just one decision boundary, on the side of adaptation. Based on separate fits to three 

conditions (adapt-zero, adapt AV and adapt VA), these investigators reported a significant change only 

at the boundary nearest the adaptor (relative to the adapt-zero baseline). These data were consistent 

with a criterion-change account, as is the data presented here if we consider only the same three 

conditions. A similar pattern can be seen in the group-averaged data presented by Fujisaki et al. 

(2004). However, Yuan et al. (2012, Experiment 1) reported data that was most consistent with a 

latency-shift (although failures to find any significant changes relative to baseline make this conclusion 

quite tentative). 

This leads us to the recent literature demonstrating the existence of opposite contingent 

temporal recalibration effects, which are most easily reconciled with a criterion-change account. Such 

demonstrations include simultaneous and opposite temporal recalibrations to male/female faces 

presented with leading/lagging speech (Roseboom, Kawabe, & Nishida, 2013; Roseboom & Arnold, 

2011), spatially lateralised left/right blobs paired with spatially congruent leading/lagging tones 

(Heron, Roach, Hanson, McGraw, & Whitaker, 2012), and horizontal/vertical gratings paired with low-

                                                           
10 Yarrow et al. actually used a combination SJ / TOJ task, but treated the data as ternary (before/same/after). 
Their final fitting procedure was slightly suboptimal (their models should really have been maximum-likelihood 
fitted using a multinomial rather than binomial data model) but the conclusions are unlikely to be much 
affected. 



 

30 
 

pitch leading / high-pitch lagging tones (Roseboom et al., 2013, but see Heron et al., 2012). Although 

it is possible to conceive of, for example, latency shifts applying in opposite directions for the auditory 

components of male and female voices, or multiple separate population codes representing SOAs for 

different spatial locations, it is rather easier to imagine participants learning to classify simultaneity in 

different ways for different feature combinations. In a similar vein, reports that AV recalibration can 

reflect the high-level grouping of the AV adaptors when temporal information is ambiguous (Yarrow, 

Roseboom, & Arnold, 2011) and can be modulated by paying attention not just to adaptors in general, 

but specifically to their temporal relationship (Heron, Roach, Whitaker, & Hanson, 2010), are easier to 

reconcile with a decision-level explanation. 

We have, of course, already noted substantial evidence against the criterion-change account 

(in the form of evidence favouring other accounts). To this we should perhaps add some of the tasks 

tested by Fujisaki et al. (2004) in their seminal report showing, for example, that recalibration can be 

measured using an implicit task (the stream-bounce illusion). Arguably such tasks might be less 

affected by decisional criteria than explicit timing judgements, although one cannot discount the 

possibility that participants are assessing, and making decisions about, audio-visual timing 

relationships in such circumstances. More recently this finding has been supplemented by evidence 

of temporal recalibration when AV synchrony is assessed based on the peak timing of the McGurk 

illusion (Yuan, Bi, Yin, Li, & Huang, 2014). At present, there are few formal models of how relative 

timing might inform AV interactions (but see Colonius & Diederich, 2004). Such models would help 

researchers consider the potential neurocognitive loci of recalibration effects for these kinds of tasks. 

  

Summary and Conclusions 

  In this paper, we have formalised three theories AV temporal recalibration into simplified 

models, and assessed their fit to SJ data from a fairly large sample of naive participants. We found that 

both latency-shift and criterion-change models describe the group’s data better than a population-

code model. However, individual differences suggest that some blending or development of these 
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models is required to fully account for temporal recalibration data. Reviewing the increasingly 

complex literature on this topic leads us to a similar conclusion: It is possible that some sensory level 

changes occur following exposure to audiovisual adaptors, but often act in combination with decision-

level biases. The degree to which these different mechanisms manifest is likely to vary, depending on 

factors such as participant expertise, the experimental task, and the complexity/contingency of the 

stimuli. Hence we would caution against generalising too enthusiastically from one situation to 

another. We look forward to helping generate a more compelling unified account of audiovisual 

temporal recalibration, in order to better elucidate the underlying mechanisms by which humans 

perceive relative time. 
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Appendix A. Further discussion of models and the effects of changing their noise parameters 

 

Latency model (used at the basis for latency-shift and criterion-change models) 

 Latency models assume that the latency with which both audio and visual signals reach a 

decision centre in the brain is a random variable. In our variant, these random variables follow a 

Gaussian distribution. Their difference (Δt) is then classified by a decision process, which sets lower 

and upper bounds (criteria) for values of Δt that will be classified as simultaneous. These bounds are 

themselves assumed to be random variables with Gaussian distributions. 

Simulated from scratch as a series of steps using a computer, this model would have four 

quantities that contribute to the noise observed in a single psychometric function (i.e. variance in the 

two sensory signals, and variance in the two decision criteria). However, if the model were 

implemented in this way, these four parameters would be non-identifiable (a modelling term which 

indicates that they can trade off with one another to generate identical predictions). However, when 

formalised, the predictions of the model can be captured using just two noise parameters (σLow and 

σHigh) which describe the slope of the psychometric function at either side of the function. An increase 

in sensory noise (for either modality) decreases the slope on both sides of the function at once, 

whereas an increase in criterion noise decreases the slope on just one side of the function, specifically 

on the side where that criterion lies. Unfortunately, the relative contribution of each of these various 

underlying sources to the σLow/High parameters can never be recovered using only SJs. 

In the main text of this paper, we focus on the effects of changes in mean latency for one or 

both signals (the latency-shift account) or in the position of one or other decision criteria (the criterion-

change account; see Figure 2) but for completeness, Figure A1 panels A-C show the effects of making  

changes in each source of noise. 

 

<INSERT FIGURE A1 AROUND HERE> 
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Population-code model 

 Population-code models assume that neural units, each with a specific preference but 

collectively exhibiting a range of preferences, code the magnitude of an attribute unambiguously in 

their collated firing rates. In our variant, each neurone has a Gaussian tuning curve and shows Poisson 

variability in its spike rate. The preferences of different neural units vary by a fixed step size of 50 ms, 

but the number of neurones is a free parameter. Activity is interpreted by a sophisticated MLE 

decoder, yielding a single estimate that can then be compared with two decision criteria to reach a 

judgement about synchrony. Adaptation is modelled as the suppression of neurones with preferences 

close to the adaptor, with this suppression falling off with a Gaussian profile. 

We do not have formally derived predictions for how this model behaves as parameters vary, 

so are somewhat limited in what we can say about how changes in the underlying architecture affect 

the psychometric function. However, the model can be simulated, and in Figure A1 panels D-F we 

illustrate the consequences of changing some parameters (specifically N and σ, which contribute 

mainly to observed precision) to provide a greater intuition about the workings of the model. 
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Appendix B. Analysis based on separate fits to each condition 

 

In the temporal recalibration literature to date it has been common practice to fit data from 

each condition independently in order to assess the existence (and magnitude) of any recalibration 

effects. For completeness, we present such an analysis here. Data in each condition were fitted with 

a four-parameter latency SJ model identical to that used to establish synchrony boundaries in our 

baseline condition.  We focus on the mean parameter estimates for the two boundaries where 

judgements changed from asynchronous (with audio coming first) to synchronous (the low boundary) 

and from synchronous back to (visual-first) asynchronous (the high boundary). Figure A2 shows the 

mean value of these boundaries in each of the four adaptation conditions. Averaging the low and high 

boundaries provides one method to estimate a point of subjective simultaneity. Hence an ANOVA 

incorporating both the two boundary estimates (as factor 1) and also the different adaptation 

conditions (factor 2) firstly tests for changes in the PSS (as a main effect of adaptation condition) and 

secondly reveals additional information about the relative effects of adaptation at each boundary (as 

an interaction). 

 

<INSERT FIGURE A2 AROUND HERE> 

 

Most previous temporal recalibration studies have used either a no-adapt baseline or a zero-

adapt baseline, rather than both. We therefore ran three repeated-measures ANOVAs, the first 

considering adaptation relative to a no-adapt baseline, the second relative to a zero-adapt baseline, 

and the third comparing the two baseline conditions to each other. Note that we do not report the 

(trivial) main effects of boundary (which were always obtained). 

The first ANOVA (baseline vs. adapt AV vs. adapt VA) revealed a main effect of adaptation 

(F[1.30,27.26] = 19.87, p < 0.001) but the interaction narrowly missed significance(F[1.68,35.31] = 3.44, p = 

0.051). This analysis would most straightforwardly support a latency-shift account, where both 
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boundaries move together during adaptation. Post-hoc t-testing suggested significant differences 

between baseline and adapt AV conditions and between adapt AV and adapt VA conditions (for data 

averaged across the two boundaries). 

The second ANOVA (adapt zero vs. adapt AV vs. adapt VA) revealed a main effect of adaptation 

(F[1.21,25.31] = 20.91, p < 0.001) and an interaction (F[1.46,30.74] = 8.56, p = 0.003). Post-hoc t-testing 

suggested a significant low-boundary difference between adapt zero and adapt AV conditions and a 

significant high-boundary difference between adapt zero and adapt VA conditions. This analysis would 

most straightforwardly support a criterion-change account, as there is unequal change at the two 

boundaries following lag adaptation, and the change always occurs mainly at the boundary closest to 

the adaptors. 

The third ANOVA (baseline vs. adapt zero) revealed a main effect of adaptation (F[1,21] = 21.11, 

p < 0.001) and an interaction (F[1,21] = 19.89, p < 0.001). Post-hoc t-testing suggested a significant 

difference only at the high boundary, which moved inwards, as predicted by the population-code 

model. 

In sum, independently fitting data from each adaptation condition showed clear evidence of 

lag-adaptation effects in the sample as a whole, but did not differentiate between the three accounts 

of lag adaptation under consideration in this paper. 
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Tables 

Table 1. Means (SEMs) of best-fitting model parameters for the six-parameter latency-shift model (both 

unconstrained and constrained variants) for all participants (Ps), and for the subset of participants for whom 

this model provided the best fit 

 Mean best-fitting parameter (ms) 

 
 

BLow BHigh σLow σHigh SAV SVA 

Unconstrained 
(All Ps) 

-199 (14) 215 (22) 109 (12) 144 (12) -90 (10) 22 (21) 

Constrained 
(All Ps) 

-200 (14) 212 (22) 122 (13) 144 (12) -76 (9) 53 (9) 

Unconstrained 
(Best-fitted Ps, 
N=6)) 

-216 (33) 243 (32) 94 (16) 162 (12) -116 (17) 4 (38) 

Constrained 
(Best-fitted Ps, 
N=3) 

-262 (52) 279 (34) 118 (26) 181 (16) -119 (38) 80 (32) 
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Table 2. Means (SEMs) of best-fitting model parameters for the six-parameter criterion-change model (both 

unconstrained and constrained variants) for all participants (Ps), and for the subset of participants for whom 

this model provided the best fit 

 Mean best-fitting parameter (ms) 

 
 

BLow BHigh σLow σHigh CAV CVA 

Unconstrained 
(All Ps) 

-193 (16) 175 (16) 115 (11) 137 (12) -70 (24) 107 (28) 

Constrained 
(All Ps) 

-182 (14) 179 (16) 123 (14) 142 (11) -91 (17) 129 (20) 

Unconstrained 
(Best-fitted Ps, 
N=10) 

-205 (23) 212 (22) 127 (22) 136 (13) -110 (36) 158 (46) 

Constrained 
(Best-fitted Ps, 
N=11)) 

-194 (16) 211 (20) 104 (7) 136 (13) -133 (15) 169 (26) 
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Table 3. Means (SEMs) of best-fitting model parameters for the six-parameter population-code model for all 

participants (Ps), and for the subset of participants for whom this model provided the best fit (compared to 

constrained variants of other models) 

 Mean best-fitting parameter 

 
 

N σ (ms) α σa (ms) BLow (ms) BHigh (ms) 

 All Ps 17 (1) 1914 (119) 0.21 (0.04) 86 (11) -255 (14) 232 (20) 

Best-fitted Ps (N = 8) 12 (1) 1380 (150) 0.2 (0.06) 101 (20) -210 (25) 157 (22) 
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Figure legends 

 

Legend to Figure 1 

 Modelling schemes. A. In the latency models used here, two stimuli, such as an auditory beep 

and visual flash separated by 50 ms (bottom) accrue Gaussian latency noise as they pass through the 

brain. In this example, average latency is the same for each signal, so the mean relationship between 

objective asynchronies (measured at the sense organs; x-axis in the third graph down) and subjective 

asynchronies (at some intra-brain comparator; y-axis) is described by the line y = x. However, internal 

noise means that the subjective SOA actually falls somewhere in a Gaussian distribution centred 

(vertically) on this line. Hence, by slicing this graph vertically, we can focus in on the subjective SOA 

distribution predicted for multiple repetitions of a single (-50 ms) stimulus pair (second graph down). 

Stimuli are judged simultaneous when the subjective SOA falls between two decision criteria, but 

these criteria are not stable. They are modelled as Gaussian random variables (shown by graded 

shading in the figure, where dark indicates high probability density). In this example, the AV criterion 

is more stable than the VA criterion. Integrating the region between the (variable) decision criteria 

predicts the relevant point on the psychometric function for SJs (top graph). B. The same -50 ms SOA 

stimulus (bottom) yields a pattern of activity in a population code (third graph down) in which each 

neural unit has a Gaussian tuning curve that falls off around its preferred asynchrony. Firing rates 

reflect the position of the stimulus along a unit’s tuning curve (plus Poisson noise) with adaptation 

suppressing the tuning curves of neurones with nearby preferences (inset). A decoding layer receives 

weighted inputs from all neural units and generates a maximum-likelihood estimate of the SOA. 

Because neural units are noisy, the same stimulus generates a distribution of decoded SOAs across 

multiple trials (second graph down). Stimuli are judged simultaneous if they fall between two decision 

criteria, so integrating the region between these criteria predicts the -50 ms SOA point on the SJ 

psychometric function (top graph). 
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Legend to Figure 2 

 Model predictions. The predicted biases in subjective SOAs (from baseline testing to post-

adaptation conditions) are depicted (top) above the resultant changes in psychometric functions for 

simultaneity judgements (bottom). Predictions shown here were generated using the mean values of 

model parameters obtained experimentally. For clarity, the adapt-VA condition has been omitted. A. 

The latency-shift model predicts no shift in subjective SOAs following exposure to synchronous 

adaptors, but a uniform shift at all test SOAs following exposure to an auditory lead. The entire SJ 

psychometric function therefore moves a corresponding amount along the objective-SOA axis. B. The 

criterion-change model predicts no sensory changes at all, so no shift in subjective SOAs, but rather a 

movement of the decision boundary (dashed grey lines in upper figures) near the point of adaptation, 

specifically for non-zero adaptors. The SJ psychometric function therefore expands outwards on the 

side of adaptation. C. The population-code model predicts non-uniform repulsive changes in 

subjective SOA depending on the relative position of the test and the adaptor. The SJ psychometric 

function therefore contracts inwards, on both sides following synchronous adaptation, and from the 

side opposite adaptation when adaptors are presented at the decision boundary that divides 

judgements of an auditory lead from judgements of synchrony. 

 

Legend to Figure 3 

 Schematic of methods. A. Flow-chart depiction of the experiment. Dotted grey lines indicate 

how values obtained in baseline fits were used as adaptors in subsequent conditions. B. Top-up and 

test procedure used in adaptation blocks, showing an example of VA adaptation. For black & white 

reproductions: LED flashes were red during adaptation and green during test. 

 

Legend to Figure 4 

 Simultaneity judgement data (grey circles) from three different example participants (left to 

right) in all four conditions (top to bottom) alongside fits (solid black lines) from the best-fitting model 
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in each case. Positive SOA values indicate sound lagging light. Participant N (in part A) was best fitted 

by the latency-shift model, participant CC (in part B) by the criterion-change model, and participant X 

(in part C) by the population-code model. Circle size indicates the number of contributing judgements 

for each data point. 

 

Legend to Figure 5 

 Group average data. A. Mean log-likelihood (indicating goodness of model fit) for all three six-

parameter models, including unconstrained and constrained variants of latency-shift and criterion-

change models (see main text for further details). Asterisks (*) denote a significant difference (p <0.05) 

from all other conditions. Error bars denote standard errors of the mean. B. As part A, but showing 

mean Akaike Information Criteria (AIC) for five-parameter latency-shift and criterion-change models 

predicting only symmetric psychometric functions (plus their constrained variants) and the six-

parameter population-code model. C. Simultaneity judgement data collated from all participants. 

Note that the adaptive method for stimulus selection meant that extreme asynchronies were less well 

sampled and predominantly reflect judgements from noisier participants. In this panel, error bars 

denote the Agresti-Coull 95% binomial confidence interval. 

 

Legend to Figure A1 

 Examples of how changes to model parameters for a latency model (A-C) and a population-

code model (D-F) affect the resultant psychometric function. A. Effects of changing the positions of 

decision criteria for judging events synchronous (BHigh and BLow) from +/-100 ms (thin black curve) to 

+/-200 ms (medium dark-grey curve) to +/-300 ms (thick light-grey curve) B. Effects of increasing 

variability in the Δt distribution of relative arrival times (affecting both σLow and σHigh parameters), with 

noise increasing from 10,000 ms2 (thin black curve) to 20,000 ms2 (medium dark-grey curve) to 30,000 

ms2 (thick light-grey curve) C. Effects of increasing variability in the placement of the BHigh decision 

criterion (affecting only the σHigh parameter), with noise increasing from 0 ms2 (thin black curve) to 
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10,000 ms2 (medium dark-grey curve) to 20,000 ms2 (thick light-grey curve) D. Effects of changing 

tuning-curve widths (σ) for a population of 25 (N = 12) neural units. Increasing SD from 1200 ms (thin 

black curve) to 1500 ms (medium dark-grey curve) to 1800 ms (thick light-grey curve) flattens the 

psychometric function. E. Effects of changing number of neural units on either side of zero (N) for a 

population with tuning curve SD (σ) of 1500 ms. Increasing N from 9 (thin black curve) to 12 (medium 

dark-grey curve) to 15 (thick light-grey curve) sharpens the psychometric function. F. Although σ and 

N both modify the psychometric function in similar ways, varying them independently can lead to 

subtle differences. For a population with low N (N = 3, σ = 600 ms; thin black curve) a fairly similar 

psychometric function can be obtained from a larger population with broader tuning (N = 12, σ = 1400 

ms; medium light-grey curve) but it has heavier tails. If a bias is present (BLow increased from -100 to -

50 ms and BHigh increased from 100 to 150 ms) the low-N population produces a skewed psychometric 

function (thin dotted black curve) whereas the high-N population continues to produce a symmetric 

function (medium dotted light-grey curve). 

 

Legend to Figure A2 

 Summary of independent fits to each adaptation condition.  In black: Mean parameter 

estimates for the low and high transition boundaries between judgements of synchrony and 

asynchrony (BLow and BHigh) in all four adaptation conditions (error bars denote standards errors). In 

grey: Psychometric functions for SJs generated using group-average parameters. 
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